このウェブサイトはあなたが最高の体験を得るためにクッキーを使用します。
詳細を見る
はい
ホーム
プロジェクト
研究内容
メンバー
卒業生・修了生
発表文献
アクセス
ライト
ダーク
自動
日本語
English
paper-conference
Applicability of Facial Video-Based Alertness Estimation Model in Real Online and In-Person Classrooms
Accurately capturing learners’ internal states is essential in modern educational environments to support effective teaching and the …
芦田 淳
,
Ryosuke Kawamura
,
早志英朗
,
長原一
引用
URL
Auxiliary Gene Learning: Spatial Gene Expression Estimation by Auxiliary Gene Selection
Spatial transcriptomics (ST) is a novel technology that enables the observation of gene expression at the resolution of individual …
Kaito Shiku
,
西村和也
,
Shinnosuke Matsuo
,
Yasuhiro Kojima
,
Ryoma Bise
引用
Discriminative Analysis of Autistic Tendencies at 18 Months of Age Using Eye Gaze Characteristics in 4-, 10-, and 18-month-old Infants
Anomalies in motor function and social communication skills constitute early signs of autism spectrum disorder (ASD). In recent years, …
Rena Ueda
,
Hirokazu Doi
,
Akira Furui
,
Koji Shimatani
,
早志英朗
,
Toshio Tsuji
引用
URL
Gaussian-Based Instance-Adaptive Intensity Modeling for Point-Supervised Facial Expression Spotting
Point-supervised facial expression spotting (P-FES) aims to localize facial expression instances in untrimmed videos, requiring only a …
Yicheng Deng
,
早志英朗
,
長原一
引用
URL
Impact of Experimental Design in Age Prediction from Retinal Fundus Images
Artificial intelligence (AI) provides promising insights to improve and support medical diagnostics. However, the design of AI systems …
Jovana Panic
,
Atsushi Watanabe
,
早志英朗
,
中島悠太
,
Kohji Nishida
,
長原一
引用
URL
Learning Relative Gene Expression Trends from Pathology Images in Spatial Transcriptomics
Gene expression estimation from pathology images has the potential to reduce the RNA sequencing cost. Point-wise loss functions have …
西村和也
,
Haruka Hirose
,
Ryoma Bise
,
Kaito Shiku
,
Yasuhiro Kojima
引用
Multi-Task Learning of Classification and Generation for Set-Structured Data
In this study we propose a multi-task learning model of classification and generation for set-structured data. The proposed model …
佐藤 史興
,
早志英朗
,
長原一
引用
URL
Non-Negative Tensor Factorization of Infant Spontaneous Movements: A Pilot Study for ASD Risk Evaluation of Newborn Infants
Early detection of infants with autism spectrum disorder (ASD) can lead to effective developmental support. In clinical practice, early …
Rikuya Yonei
,
Akira Furui
,
Hirokazu Doi
,
Koji Shimatani
,
早志英朗
,
Midori Yamamoto
,
Kenichi Sakurai
,
Chisato Mori
,
Toshio Tsuji
引用
URL
CALICO: Confident Active Learning with Integrated Calibration
The growing use of deep learning in safety-critical applications, such as medical imaging, has raised concerns about limited labeled …
Lorenzo Querol
,
長原一
,
早志英朗
引用
URL
Instruct Me More! Random Prompting for Visual In-Context Learning
Large-scale models trained on extensive datasets, have emerged as the preferred approach due to their high generalizability across …
Jiahao Zhang
,
Bowen Wang
,
Liangzhi Li
,
中島悠太
,
長原一
PDF
引用
»
引用
×