Noisy-LSTM: Improving temporal awareness for video semantic segmentation

概要

Semantic video segmentation is a key challenge for various applications. This paper presents a new model named Noisy-LSTM, which is trainable in an end-to-end manner, with convolutional LSTMs (ConvLSTMs) to leverage the temporal coherence in video frames, together with a simple yet effective training strategy that replaces a frame in a given video sequence with noises. Our training strategy spoils the temporal coherence in video frames and thus makes the temporal links in ConvLSTMs unreliable; this may consequently improve the ability of the model to extract features from video frames and serve as a regularizer to avoid overfitting, without requiring extra data annotations or computational costs. Experimental results demonstrate that the proposed model can achieve state-of-the-art performances on both the CityScapes and EndoVis2018 datasets. The code for the proposed method is available at https://github.com/wbw520/NoisyLSTM.

発表文献
IEEE Access
Bowen Wang
Bowen Wang
特任研究員
Liangzhi Li
Liangzhi Li
招へい助教

His research interests lie in deep learning, computer vision, robotics, and medical images.

中島悠太
中島悠太
准教授

コンピュータビジョン・パターン認識などの研究。ディープニューラルネットワークなどを用いた画像・映像の認識・理解を主に、自然言語処理を援用した応用研究などに従事。

長原一
長原一
教授

コンピューテーショナルフォトグラフィ、コンピュータビジョンを専門とし実世界センシングや情報処理技術、画像認識技術の研究を行う。さらに、画像センシングにとどまらず様々なセンサに拡張したコンピュテーショナルセンシング手法の開発や高次元で冗長な実世界ビッグデータから意味のある情報を計測するスパースセンシングへの転換を目指す。