Match them up: visually explainable few-shot image classification

概要

Few-shot learning (FSL) approaches, mostly neural network-based, assume that pre-trained knowledge can be obtained from base (seen) classes and transferred to novel (unseen) classes. However, the black-box nature of neural networks makes it difficult to understand what is actually transferred, which may hamper FSL application in some risk-sensitive areas. In this paper, we reveal a new way to perform FSL for image classification, using a visual representation from the backbone model and patterns generated by a self-attention based explainable module. The representation weighted by patterns only includes a minimum number of distinguishable features and the visualized patterns can serve as an informative hint on the transferred knowledge. On three mainstream datasets, experimental results prove that the proposed method can enable satisfying explainability and achieve high classification results. Code is available at https://github.com/wbw520/MTUNet.

発表文献
Applied Intelligence
Bowen Wang
Bowen Wang
特任研究員
Liangzhi Li
Liangzhi Li
招へい助教

His research interests lie in deep learning, computer vision, robotics, and medical images.

Manisha Verma
Manisha Verma
特任研究員

Manisha’s research interest broadly lies in computer vision and image processing. Currently, she is working on micro facial expression recognition using multi-model deep learning frameworks.

中島悠太
中島悠太
准教授

コンピュータビジョン・パターン認識などの研究。ディープニューラルネットワークなどを用いた画像・映像の認識・理解を主に、自然言語処理を援用した応用研究などに従事。

長原一
長原一
教授

コンピューテーショナルフォトグラフィ、コンピュータビジョンを専門とし実世界センシングや情報処理技術、画像認識技術の研究を行う。さらに、画像センシングにとどまらず様々なセンサに拡張したコンピュテーショナルセンシング手法の開発や高次元で冗長な実世界ビッグデータから意味のある情報を計測するスパースセンシングへの転換を目指す。