AxIoU: An Axiomatically Justified Measure for Video Moment Retrieval

概要

Evaluation measures have a crucial impact on the direction of research. Therefore, it is of utmost importance to develop appropriate and reliable evaluation measures for new applications where conventional measures are not well suited. Video Moment Retrieval (VMR) is one such application, and the current practice is to use R@K,θ for evaluating VMR systems. However, this measure has two disadvantages. First, it is rank-insensitive: It ignores the rank positions of successfully localised moments in the top-K ranked list by treating the list as a set. Second, it binarizes the Intersection over Union (IoU) of each retrieved video moment using the threshold θ and thereby ignoring fine-grained localisation quality of ranked moments. We propose an alternative measure for evaluating VMR, called Average Max IoU (AxIoU), which is free from the above two problems. We show that AxIoU satisfies two important axioms for VMR evaluation, namely, Invariance against Redundant Moments and Monotonicity with respect to the Best Moment, and also that R@K,θ satisfies the first axiom only. We also empirically examine how AxIoU agrees with R@K,θ, as well as its stability with respect to change in the test data and human-annotated temporal boundaries.

論文種別
発表文献
Proc.~IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
中島悠太
中島悠太
教授

コンピュータビジョン・パターン認識などの研究。ディープニューラルネットワークなどを用いた画像・映像の認識・理解を主に、自然言語処理を援用した応用研究などに従事。