WRIME: A new dataset for emotional intensity estimation with subjective and objective annotations

概要

We annotate 17,000 SNS posts with both the writer’s subjective emotional intensity and the reader’s objective one to construct a Japanese emotion analysis dataset. In this study, we explore the difference between the emotional intensity of the writer and that of the readers with this dataset. We found that the reader cannot fully detect the emotions of the writer, especially anger and trust. In addition, experimental results in estimating the emotional intensity show that it is more difficult to estimate the writer’s subjective labels than the readers’. The large gap between the subjective and objective emotions imply the complexity of the mapping from a post to the subjective emotion intensities, which also leads to a lower performance with machine learning models.

論文種別
発表文献
Proc.~Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)
梶原智之
梶原智之
招へい助教

自然言語処理。特に、テキスト平易化、言い換え、意味的文間類似度、品質推定。

Chenhui Chu
Chenhui Chu
招へい准教授
武村紀子
武村紀子
招へい准教授

パターン認識、機械学習等を用いた環境知能や歩容認証等に関する研究に従事。

中島悠太
中島悠太
准教授

コンピュータビジョン・パターン認識などの研究。ディープニューラルネットワークなどを用いた画像・映像の認識・理解を主に、自然言語処理を援用した応用研究などに従事。

長原一
長原一
教授

コンピューテーショナルフォトグラフィ、コンピュータビジョンを専門とし実世界センシングや情報処理技術、画像認識技術の研究を行う。さらに、画像センシングにとどまらず様々なセンサに拡張したコンピュテーショナルセンシング手法の開発や高次元で冗長な実世界ビッグデータから意味のある情報を計測するスパースセンシングへの転換を目指す。