Compressive Acquisition of Light Field Video Using Aperture-Exposure-Coded Camera

Abstract

We propose a method for compressively acquiring a light field video using a single camera equipped with an optical aperture-exposure coding mechanism. The aperture-exposure coding is applied to each exposure time, enabling the embedding of the information of a light field video (a 5-D volume) into a single observed image (a 2-D measurement). Temporally-successive images obtained from the camera are used to computationally reconstruct the light field video at a faster frame rate than that of the camera. We also developed a hardware prototype to validate our method on real 3-D time-varying scenes. Using our method, we can obtain a light field video with 5 × 5 viewpoints over 4 temporal sub-frames (100 views in total) per each observed image. By repeating the capture and reconstruction processes over time, we can acquire a light field video of arbitrary length at 4 × the frame rate of the camera. To the best of our knowledge, we are the first to propose a method of joint angular-temporal compression for light-field acquisition, achieving a finer temporal resolution than that of the camera. A supplementary video is available from https://youtu.be/FAujrak8Dok.

Publication
ITE Transactions on Media Technology and Applications
Hajime Nagahara
Hajime Nagahara
Professor

He is working on computer vision and pattern recognition. His main research interests lie in image/video recognition and understanding, as well as applications of natural language processing techniques.