Attending self-attention: A case study of visually grounded supervision in vision-and-language transformers

Abstract

The impressive performances of pre-trained visually grounded language models have motivated a growing body of research investigating what has been learned during the pre-training. As a lot of these models are based on Transformers, several studies on the attention mechanisms used by the models to learn to associate phrases with their visual grounding in the image have been conducted. In this work, we investigate how supervising attention directly to learn visual grounding can affect the behavior of such models. We compare three different methods on attention supervision and their impact on the performances of a state-of-the-art visually grounded language model on two popular vision-and-language tasks.

Publication
Proc.~Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop
Jules Samaran
Jules Samaran
Intern
Noa Garcia
Noa Garcia
Specially-Appointed Assistant Professor

Her research interests lie in computer vision and machine learning applied to visual retrieval and joint models of vision and language for high-level understanding tasks.

Chenhui Chu
Chenhui Chu
Guest Associate Professor
Yuta Nakashima
Yuta Nakashima
Associate Professor

Yuta Nakashima is an associate professor with Institute for Datability Science, Osaka University. His research interests include computer vision, pattern recognition, natural langauge processing, and their applications.

Related