Acquiring a Dynamic Light Field Through a Single-Shot Coded Image

Abstract

We propose a method for compressively acquiring a dynamic light field (a 5-D volume) through a single-shot coded image (a 2-D measurement). We designed an imaging model that synchronously applies aperture coding and pixel-wise exposure coding within a single exposure time. This coding scheme enables us to effectively embed the original information into a single observed image. The observed image is then fed to a convolutional neural network (CNN) for light-field reconstruction, which is jointly trained with the camera-side coding patterns. We also developed a hardware prototype to capture a real 3-D scene moving over time. We succeeded in acquiring a dynamic light field with 5x5 viewpoints over 4 temporal sub-frames (100 views in total) from a single observed image. Repeating capture and reconstruction processes over time, we can acquire a dynamic light field at 4x the frame rate of the camera. To our knowledge, our method is the first to achieve a finer temporal resolution than the camera itself in compressive light-field acquisition. Our software is available from our project webpage.

Publication
Proc.~IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Michitaka Yoshida
Michitaka Yoshida
PhD Student
Hajime Nagahara
Hajime Nagahara
Professor

He is working on computer vision and pattern recognition. His main research interests lie in image/video recognition and understanding, as well as applications of natural language processing techniques.

Related