SCOUTER: Slot attention-based classifier for explainable image recognition

概要

Explainable artificial intelligence has been gaining attention in the past few years. However, most existing methods are based on gradients or intermediate features, which are not directly involved in the decision-making process of the classifier. In this paper, we propose a slot attention-based classifier called SCOUTER for transparent yet accurate classification. Two major differences from other attention-based methods include: (a) SCOUTER’s explanation is involved in the final confidence for each category, offering more intuitive interpretation, and (b) all the categories have their corresponding positive or negative explanation, which tells "why the image is of a certain category" or "why the image is not of a certain category." We design a new loss tailored for SCOUTER that controls the model’s behavior to switch between positive and negative explanations, as well as the size of explanatory regions. Experimental results show that SCOUTER can give better visual explanations in terms of various metrics while keeping good accuracy on small and medium-sized datasets.

論文種別
発表文献
Proc.~IEEE/CVF International Conference on Computer Vision (ICCV)
Liangzhi Li
Liangzhi Li
招へい助教

His research interests lie in deep learning, computer vision, robotics, and medical images.

Bowen Wang
Bowen Wang
特任研究員
Manisha Verma
Manisha Verma
特任研究員

Manisha’s research interest broadly lies in computer vision and image processing. Currently, she is working on micro facial expression recognition using multi-model deep learning frameworks.

中島悠太
中島悠太
准教授

コンピュータビジョン・パターン認識などの研究。ディープニューラルネットワークなどを用いた画像・映像の認識・理解を主に、自然言語処理を援用した応用研究などに従事。

長原一
長原一
教授

コンピューテーショナルフォトグラフィ、コンピュータビジョンを専門とし実世界センシングや情報処理技術、画像認識技術の研究を行う。さらに、画像センシングにとどまらず様々なセンサに拡張したコンピュテーショナルセンシング手法の開発や高次元で冗長な実世界ビッグデータから意味のある情報を計測するスパースセンシングへの転換を目指す。