The semantic typology of visually grounded paraphrases

概要

Visually grounded paraphrases (VGPs) are different phrasal expressions describing the same visual concept in an image. Previous studies treat VGP identification as a binary classification task, which ignores various phenomena behind VGPs (i.e., different linguistic interpretation of the same visual concept) such as linguistic paraphrases and VGPs from different aspects. In this paper, we propose semantic typology for VGPs, aiming to elucidate the VGP phenomena and deepen the understanding about how human beings interpret vision with language. We construct a large VGP dataset that annotates the class to which each VGP pair belongs according to our typology. In addition, we present a classification model that fuses language and visual features for VGP classification on our dataset. Experiments indicate that joint language and vision representation learning is important for VGP classification. We further demonstrate that our VGP typology can boost the performance of visually grounded textual entailment.

発表文献
Computer Vision and Image Understanding
Chenhui Chu
Chenhui Chu
招へい准教授
Noa Garcia
Noa Garcia
特任助教

Her research interests lie in computer vision and machine learning applied to visual retrieval and joint models of vision and language for high-level understanding tasks.

中島悠太
中島悠太
准教授

コンピュータビジョン・パターン認識などの研究。ディープニューラルネットワークなどを用いた画像・映像の認識・理解を主に、自然言語処理を援用した応用研究などに従事。