Inverse Rendering of Translucent Objects using Physical and Neural Renderers

Abstract

In this work, we propose an inverse rendering model that estimates 3D shape, spatially-varying reflectance, homogeneous subsurface scattering parameters, and an environment illumination jointly from only a pair of captured images of a translucent object. In order to solve the ambiguity problem of inverse rendering, we use a physically-based renderer and a neural renderer for scene reconstruction and material editing. Because two renderers are differentiable, we can compute a reconstruction loss to assist parameter estimation. To enhance the supervision of the proposed neural renderer, we also propose an augmented loss. In addition, we use a flash and no-flash image pair as the input. To supervise the training, we constructed a large-scale synthetic dataset of translucent objects, which consists of 117K scenes. Qualitative and quantitative results on both synthetic and real-world datasets demonstrated the effectiveness of the proposed model.

Publication
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Chenhao Li
Chenhao Li
PhD Student
Trung Thanh Ngo
Trung Thanh Ngo
Guest Researcher

His main research interests include 3D reconstruction, inverse rendering, and machine learning applications in computer vision.

Hajime Nagahara
Hajime Nagahara
Professor

He is working on computer vision and pattern recognition. His main research interests lie in image/video recognition and understanding, as well as applications of natural language processing techniques.